Trapshooters Forum banner

"Fast shells spread more"- do they? (Winston)

11845 Views 72 Replies 27 Participants Last post by  fearlessfain
"Fast shells spread more"- do they?

“The effect of shot speed on pattern width is known by all but properly exploited by but few. When you need just a bit more spread and don’t want to bother with changing chokes, just slipping in the next “speed group” – say substituting “heavy” for “light” – can give you just the edge you need, with the bonus of extra pellet energy at the target that changing chokes won’t accomplish.

But you’d best not try this without regard for the physics involved, as thoughtless changes can be more trouble than benefit. Here’s why: pattern development is dependent on air drag, and that drag is not a simple monotonic function of pellet speed, but rather is a function of the square of the speed. So the effect of pattern-widening is magnified at the upper reaches of pellet velocity. Here is an illustrative figure:



And it’s that huge increase in pattern-width at the right side of the graph that can lead the unthinking claysman into trouble. Trying for that last bit of pellet energy for a 60-yard crosser, he loads up with 1400 FPS and pays twice for his mistake: By the time the pattern gets out there it’s often too spread out to even clip off a “visible piece” and the recoil – which he has suffered for no benefit - will affect his shooting for the rest of the day.”

I pen that last period and lay down my quill, letting my eyes drift back appreciatively over the text. Very good – very good indeed! Beyond just repeating what every reader will agree with, I offer not just scientific causation but even surprising graphical evidence, as well as both support and warning to my readers, which about covers the bases, to my mind. OK, that “instrumental” flourish on the x-axis of the graph might be a bit over the top, but it lends such an air of erudition to the enterprise it’s just too good to pass up. If the response to this article is favorable I may be able to string this out for a couple more issues, dreaming up wad and powder effects, interactions with shot size, whatever comes to mind; you know the drill.

Time again to reflect how good I have it. An evening in my den in front of the fire, building castles in air for yet another shooting publication. My ever-more-grey-muzzled retriever curled at my feet, napping and no doubt dreaming about the day in the field I promised him next month when I will pretend to test a brace of matched Purdeys. How can you beat it?


Admit it – you were well into this before you first began to smell a rat. The first parts are so much like what you read everywhere, hear at every club, I dare say they slipped past your BS detector without raising any alarm whatever. So now backtrack and see how far you have to go to find some fact –

Back 1: the “60-yard crosser” paragraph. Well that was a giveaway, wasn’t it?

Back 2: The graph. Sure, that’s a graph of squared numbers, but is it possible? I hope you don’t think so!

Back 4: This is the support for the graph. If it’s nonsense, so is this.

Back 5, right to the start. Unfortunately, there’s hardly a word of truth in it either. In fact the first 12 words, “The effect of shot speed on pattern width is known by all” are as questionable as any of the other fibs I told.

Introduction:

I’ll bet that every reader knows that when you push shot faster the pattern “opens up.” But what happens when I now ask you “How much?” On the off chance that you have an answer to that, I keep another question in reserve: “How do you know?”

This article will cover an experiment involving shot speed and pattern width. For a limited set of data, it answers those questions which I’ll wager stumped most of you: “How much?” and “How do you know?” Based on data from 10 patterns each from shells measured at 1030, 1130, and 1230 feet per second, it will report some statistically significant differences, and some cases where the “expected” differences failed to appear.

Properly, this is the first test of patterning which should be done, since it answers the question of how well speed has to be controlled in comparing shells, chokes, powders and so on. If a difference is found is it due to the change in components or equipment, or could shot velocity be responsible for the whole finding? Conversely, if no difference if found, is it speed making a change in one direction and “canceling out” a change in the other, thus masking a real effect?

The best experiments make you re-examine your ideas, perhaps even change your mind or behavior. This experiment has led me to put some of my MEC bushings away in favor of bigger-numbered, larger-holed ones. With luck, it may change your outlook as well.

Equipment:

The critical piece of equipment making this experiment possible was the software program “Shotgun-Insight”, an application which reads digital photos of patterns and analyses them, making it possible to read enough patterns to draw reasonable conclusions from them. The rest of the equipment used: pattern paper, a digital camera with flash and tripod, PC and the rest, act only as support for the program. Kaleidagraph software produced the graphs.

Method:

A MEC 9000H was used to load once-fired STS hulls with Red Dot – 15.7 grains, 17.7 grains, or 19.7 grains. With the components used, the resulting speeds were about 1030, 1130, and 1230 feet per second, as measured by an inductive chronograph, and the 10-shot standard deviations of all were under 5, which is consistent ammo indeed. The shot is Remington magnum 8’s with a count of about 440 per load as dropped by a 1 1/8 oz. MEC bar. All shot is from the same bag.

On a warm day at Metro Gun Club in Blaine, Minnesota, patterns were produced firing a “factory bigbore” Perazzi which has produced consistent full choke patterns in other experiments. The distance used was 34 yards, in an effort to make more use of the “75% diameter” statistic offered by Shotgun Insight. Ten patterns were shot at each shot-speed.

The digital photos were intentionally overexposed by one stop and a fill-in flash was used; all the resulting JPEG’s were usable.

Results:

Here, in bare-bones form, are the results of the test.



Based on averages (mean), the patterns from the 1030 FPS loads were denser in the 0-10 inch and 10-20 inch diameter rings than the others and the 20-30 inch diameter ring was less dense. The innermost-ring differences were not statistically significant (I.E., roughly, they could reasonably attributed to chance) while the others were significant.

Look, even I see this as something of a letdown. Hours of work resulting in 12 numbers only four of which mean anything? I plan to go on with “How much?” and “How do I know?” to show what’s behind those numbers, but in the end, those are the “experimental results.”

Let’s look at the data as it comes in, that is, shot by shot.



Looking at the traces from the top down on the graph, the first, the black line and open squares, shows that the pellet count is stable, pattern-to-pattern.

The green dots, connected by a green line, are the pellet counts in the 10-to-20-inch ring. This count too is quite stable.

Going on down, we meet the red trace, the pellet count in the inner 10 inch circle, and the blue trace, the 20-to-30-inch ring. They are more variable than the others, and in addition, vary inversely, that is, when one goes up the other goes down. When there are few pellets in the center there are more on the edge and visa-versa, while the 10-20 inch ring just tracks along. No, these pellets are not jumping from the inner to the outer rings, it’s just that even when the total number of pellets in a 30-inch pattern is the same, some patterns are more spread out than others. “Spreading out” means some 1-10 drifting into the 10-20 area and, at the same time, 10-20 pellets drifting into the 20-30 area. The sector with the most pellets is the one from 10 to 20 inches, but since it is 3 times the area of the 10 inch circle, the pellet density is only about 2/3 that of the center. Once again, these patterns are “hot in the center” like all the others intended for trap shooting.

So what does a significant difference look like?



The shots have been ordered according to total pellets in 30 inches, increasing left to right. The 1030 patterns are the solid markers and lines; the 1130 are outline markers and dotted lines. We see some real differences here. The 1030 FPS 0-10 and 10-20 rings are more dense, less dense in the 20-30 inch ring. So, in fact, increasing the speed 100 fps with this slow start has widened the pattern, much as opening a choke tries, but mostly fails, to do.

And what do non-significant differences look like?



Here the traces cross and re-cross each other in random ways and are often just the same. In this case, starting from a faster baseline than the first graph, increasing shot speed by 100 FPS did not widen the pattern.

Another way of looking at this is the “75% diameter” statistic. This is a calculated rather than counted datum which predicts a circle diameter which would contain 75% of the shot.



This is the same story as told by the “rings” analysis. The 75% diameter of a 1030 FPS shell is smaller, that is, the pattern is smaller.

Just a couple more things. Could I have gotten these results by other means, specifically “by eye” or “side-by-side inspection” or fewer patterns?

No, and here’s reason 1. There’s too much overlap:



Most of the time most of the rings look about the same across all speeds. You can’t possibly tell more than a couple apart, much less several at once.

And here’s reason 2:



If I’d shot just the first 5 I’d say that 1130 FPS had a hotter center than 1230. If I’d shot just the second 5, I’d say that 1230 had a hotter center than 1130. It’s only by shooting all ten can I see that there’s really no difference between them at all. You need at least 10 patterns to avoid being misled.

Discussion:

Based on this, I’m going to speed up my first-shot-doubles shells to about 1150 FPS from the 1050 FPS range I’ve been using. They are 1-oz. anyway; why not give myself a better chance? I’m going to try Extralites at handicap. Just to see if they are denser – denser enough, that is, to help.

Is the odd effect seen here related to sub-sonic v. super-sonic? Someone here, maybe it was HMB, made a big deal of that in an earlier thread. Could he have been right? Some evening I’ll settle down by the fire with Kyra at my feet and explain it all for you.

Yours in Sport,

Neil
  • Like
Reactions: Ravenanme and JACK
Status
Not open for further replies.
61 - 73 of 73 Posts

· Registered
Joined
·
9,941 Posts
Discussion Starter · #61 ·


zzt, I asked about the "shells-the-same" because I assumed some said they were different. Your 2/3 right, assuming a run of say 10 shells, is best explained by guessing.

You make more of the differences than you need to, especially if they are guessing, and they are in your tests.

Actually, I did exactly as Andrew suggests. I weighed a number of loads (Pact dribbler, it doesn't take that long) and set out to see how sensitive 2 subject were to speed differences. The test really is double blind, and the order of presentatioin is genuinely random. Some pairs of shells are the same, and the shooters' only task is to say "same or different." The two subjects, I and my friend Roman, performed exactly at chance level. We were completely guessing. And there's more - I _knew_ I was guessing. Try it sometime the way I describe it - after 20 shots you will surely see that these two speeds, 1140 and 1200, are impossible to tell apart. Since the speed difference in shells was a tested 60 ft/sec, so far I can say that _if_ anyone can tell any difference between fast ans slow powders, it's not recoil they are using. And we (Roman and I) aren't insensitive to recoil at all. We can tell our 1 oz. loads, or Winchester's, from extra lites, if not heavy papers from handicap papers in some lot numbers.

I personally also think that the push/shove comparison is completely wrong as well. There's just not enough difference, particularly if the speed test is such a failure. If you can't tell 4% in recoil, how can you differentiate timings in the range of 3/10,000 second?

So recoil is out, time is out , but vibration and sound are definitely in play, as far as I'm concerned. Particularly sound. That's the next place I'm going, and if the results are positive in a very tricky experiment I have in mind, I think we can put all the rest of this powder difference to bed.

The 1 oz results are in. They will be in new thread. I look forward to your comments and participation.

Yours in Sport,

Neil
 

· Registered
Joined
·
10,783 Posts
I just finished re-reading that one again Neil, thanks for the link! That thread is also very informative and good information for shooter's serious about the consistencies of their re-loads! Thanks for sharing your findings! I've improved my loading skill and have always taken pride in my home-mades. Once I find one that works well for breaking targets for me consistently, I experiment with diligence for the best flavor of the month and hardly ever change much at all.

Thinking back to reading of Arnold Reigger's winning abilities on the HOF site, most of his winning ways were shot with a 2-3/4 dr. load! There's a lesson to be learned from that and the valuable input you share with us! Thank you sir! Hap
 

· Registered
Joined
·
518 Posts


simple demonstration=take a small amount of pebbles and gently toss them a short distance and then take the same amount and throw them as hard as you can. idid not say it's scientific but it is interesting.
 

· Registered
Joined
·
307 Posts


Getting back to part of nthe original part of your thread Neil…I'm very interested in your results of the slower (subsonic) loads. Supersonic loads (about 1,100 ft/sec and up - right?) have to go through the transonic zone twice, don't they? Once through and once back? Wouldn't that affect pattern? Especially coming back down to subsonic speed - I wonder about where that happens in the flight of the string, and how it might affect its shape?

I tried to read carefully back through all these comments and if this point was already addressed, everyone please accept my apologies.

Thanks Neil, especially for all this wonderful work. The unexamined shell is not worth shooting; especially in a shoot off.

Steve
 

· Banned
Joined
·
2,826 Posts


FPS delta re front pellet in pattern vs. last:

If the string is 5ft long and the speed of the first is 1000fps at 100ft from the muzzle, then the speed of the last (trailing 5 feet ) would be 950fps
 

· Registered
Joined
·
17 Posts


Great read and nicely done.

I'm probably "too late for this party", but it's clear there's no advantage for the higher speeds in patterns, at least above a certain level. Which is good...no need for extra recoil.

Would there be any reason such as "energy" needed to break targets at 50, 60 yards that would warrant exceeding the 1200 FPS limit, as an example. Meaning, do you think the extra speed creates enough energy to make a difference at much longer distances? Difference, to me, means breaking a target and not breaking reliably. Using 7 1 /2 shot.

At 45, 50+ yards there is a visual difference, IME, between the shot fired and "time" the bird breaks between a 1150 and 1290 fps for example. Something you could accomodate, I assume, if you shot one or the other consistently.

Regardless, great information
 

· Registered
Joined
·
731 Posts


I missed this the first time through. The idea of sonic speed was a huge factor in 1,000 rifle shooting. In a Palma Match, you are limited to a .308. Keeping the bullet going supersonic was not always easy. Sometime is dictated what powder you used with what bullet. When a bullet dropped below the sound barrier, it would usually keyhole. It is cool to see a side profile in the target instead of a round hole! Guess the turbulence was quite bad dropping below the sound barrier. This is not as big of an issue with shot shells, but I can see where it would be a factor.

.22 silhouette shooters would also shoot standard velocity ammo in a match. I questioned this on a windy day and was told that the wind acting at right angles to the projectile would actually push it more horizontally at faster speeds.

With this being said, I can understand, although not completely, why faaster is not better. My 1oz loads at 1085 powder targets quite well. This thread helped explain why this is possible.


Gary
 
61 - 73 of 73 Posts
Status
Not open for further replies.
Top